Detecting Spam Blogs: A Machine Learning Approach
نویسندگان
چکیده
Weblogs or blogs are an important new way to publish information, engage in discussions, and form communities on the Internet. The Blogosphere has unfortunately been infected by several varieties of spam-like content. Blog search engines, for example, are inundated by posts from splogs – false blogs with machine generated or hijacked content whose sole purpose is to host ads or raise the PageRank of target sites. We discuss how SVM models based on local and link-based features can be used to detect splogs. We present an evaluation of learned models and their utility to blog search engines; systems that employ techniques differing from those of conventional web search engines.
منابع مشابه
Spam Blog Filtering with Bipartite Graph Clustering and Mutual Detection between Spam Blogs and Words
This paper proposes a mutual detection mechanism between spam blogs and words with bipartite graph clustering for fi ltering spam blogs from updated blog data. Spam blogs are problematic in extracting useful marketing information from the blogosphere; they often appear to be rich sources of information based on individual opinion and social reputation. One characteristic of spam blogs is copied...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملContent Trust Model for Detecting Web Spam
As it gets easier to add information to the web via html pages, wikis, blogs, and other documents, it gets tougher to distinguish accurate or trustworthy information from inaccurate or untrustworthy information. Moreover, apart from inaccurate or untrustworthy information, we also need to anticipate web spam – where spammers publish false facts and scams to deliberately mislead users. Creating ...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملCharacterizing the Splogosphere
Weblogs or blogs collectively constitute the Blogosphere, forming an influential and interesting subset on the Web. As with most Internet-enabled applications, the ease of content creation and distribution makes the blogosphere spam prone. Spam blogs or splogs are blogs hosting spam posts, created using machine generated or hijacked content for the sole purpose of hosting ads or raising the Pag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006